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The question

In this short document I will transcribe and slightly modify an e-mail sent to me by Benoit Dherin,
which explains how one would be lead to the definition of a normal operator.

The usual definitions are: the adjoint T ∗ of T is the unique operator satisfying 〈Tv,w〉 = 〈v, T ∗w〉 for
all v,w. A normal operator is one such that T ∗T = TT ∗.

The question is, where on earth does this definition come from?

Consider the following answers: (1) Because complex numbers satisfy zz = zz. (2) Because operators
with an orthonormal eigenbasis satisfy TT ∗ = T ∗T .

The reason that these answers do not address the question is because they are inherently unnatural.
The point is that complex numbers, and operators with orthonormal eigenbases, have many proper-
ties. Not every one of those properties is worth centering a definition around, so there should be a
reason to look at normal operators in particular.

Groundwork; discovering self-adjoint operators

Let V be a finite dimensional complex inner product space. The most natural way to think about
L(V) is as a noncommutative ring without unit (or as an analyst might simply say, a ring). The
prototype of this type of ring is the set of n× n matrices, which L(V) “is,” up to a non-canonical
isomorphism. (For each basis of V , there is an isomorphism L(V) → Mn×n(C). Better, for each
orthonormal basis of V , there is an isomorphism L(V) → Mn×n(C) which respects the norm nicely
(c.f. “operator norm”).)

The complex numbers themselves are a wonderful ring, even a field, which have many nice prop-
erties. One nice thing about the complex numbers is that they have an involution ∗ : z 7→ z. This
respects virtually all the structure of C: it is a continuous field automorphism, and its fixed field, i.e.
{z ∈ C : z = z} is exactly R. (The Galois group Gal(C/R) = {Id, ∗}.) This involution also has nice
properties and is useful for analyzing the complex numbers.

So it would be nice if we could have an involution satisfying as many of the properties of ∗ as
possible. The first involutions that people might think of on L(V) are “take the complex conjugate of
all the matrix entries” or “take the transpose matrix.” Notice that C sits canonically inside of L(V),
as the one dimensional subspace {zId : z ∈ C}. The transpose is immediately suspect since (zT)t =
z(T t). We might prefer that our “∗” map satisfy (zT)∗ = zT ∗ if it is really trying to emulate complex
conjugation. One may have some luck proving things about the other involution, namely “take
the complex conjugate of the matrix entries.” Then “self-adjoint” would mean “has real entries,”
etc.

But if one were unsatisfied with this involution, the next thing to try would be to combine the two:
consider actually the conjugate transpose. This is where the theory would really take off.
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If T is an operator and {e1, · · · , en} is an orthonormal basis, then the matrixM(T) has i-th, j-th entry
〈Tej, ei〉. So one way to encode “conjugate transpose” would be to say that

〈T ∗ej, ei〉 = 〈Tej, ei〉 = 〈ei, ej〉

which, quantified over all v,w instead of just over a basis, gives us our modern day definition of
adjoint.

From here, we return to the task of analyzing the ring L(V). As we said before, it is useful to identify
the invariants of the involution, i.e. the real numbers. This leads us to define the self-adjoint oper-
ators T = T ∗, which would play the role of the real numbers in our analogy. This definition would
then be wildly successful: we would have no trouble proving

Niave spectral theorem: Every self-adjoint operator admits an orthonormal eigenbasis.

The first explanation

If self adjoint operators are supposed to be analogous to real numbers, and since every complex
number z = a+ ib for real a,b, and since the complex numbers are such a marvelous ring, perhaps
operators of the form R+ iM would be interesting. With this definition in hand, we would likely
have no trouble proving the complex spectral theorem and that an operator is of the form T = R+ iM
if and only if TT ∗ = T ∗T . So the analogy becomes the rather beautiful

Complex numbers ↔ Normal operators
Real numbers ↔ Self adjoint operators

The second explanation will have more details.

The second explanation

Given a theorem (in our case, we imagine that we’ve proven self adjoint ⇒ ∃ orthonormal eigenbasis)
one naturally seeks to prove a converse, or in failing to do so, either (a) discover a possible weak-
ening of hypotheses or (b) discover a strengthening of the conclusion, so as to have a biconditional
theorem.

Let’s take a look. Suppose we are given an operator T which has an orthonormal eigenbasis. Then,
with respect to this basis, it’s matrix is diagonal. If you write this out, and compare it with its
conjugate transpose, we see that the converse is false


λ1 0 · · · 0

0 λ2 · · · 0
...

...
...

0 0 · · · λn

 6=

λ1 0 · · · 0

0 λ2 · · · 0
...

...
...

0 0 · · · λn


unless, of course the λi’s are real numbers. This quickly leads to a second version of the theorem,
which would be
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Pre-cursor to the spectral theorem: T is self adjoint if and only if it admits an orthonormal basis of
eigenvectors with real eigenvalues.

On the other hand, suppose we want to weaken the hypotheses. In other words, we want a definition
of a type of operator which is not quite as restrictive as that of a real number, and we’d like to be
able to prove that the operator satisfies this definition by assuming only that it has an orthonormal
eigenbasis. Let’s write our eigenvalues λj = αj + iβj, and suppose again that T has an orthonormal
eigenbasis:

M(T) =


α1 + iβ1 0 · · · 0

0 α2 + iβ2 · · · 0
...

...
...

0 0 · · · αn + iβn

 =


α1 0 · · · 0

0 α2 · · · 0
...

...
...

0 0 · · · αn

+ i


β1 0 · · · 0

0 β2 · · · 0
...

...
...

0 0 · · · βn


So what we’re seeing is that every operator with an orthonormal eigenbasis can be written as R+ iM,
where R and M actually are self-adjoint. (See also the first explanation, which may play a role in the
following insight:) If one then supposes they have an operator of the form R+ iM they will have
no trouble proving a converse, thereby establishing the complex spectral theorem as we know it
now:

Complex pectral theorem: An operator T is of the form T = R+ iM, for R,M self-adjoint, if and only
if T admits an orthonormal basis of eigenvectors. Moreover,M = 0 (i.e., T is self-adjoint) if and only
if the eigenvalues are real.

So we define a normal operator to be one which is of the form R+ iM. As we know, once you have
a definition, you try to find equivalent definitions! Form here there would be no trouble finding the
definition T ∗T = TT ∗.

The third explanation

Professor Dherin’s original intuition varied slightly from this. After discovering the naive spectral
theorem, and how nice self-adjoint operators are, one might want to look at the analogue of the unit
circle S1 = {z ∈ C : |z| = 1}. (The unit circle is very important in various ways in complex analysis
and various branches of mathematics where complex analysis is applied, like number theory (one
thing that comes to mind is the proof of Dirichlet’s unit theorem).) Now we know that |z| = 1 ⇔
zz = zz = 1, and the latter condition can actually be phrased in terms of operators. This leads
to a nice definition of unitary operators, which are operators which satisfy exactly this condition:
T ∗T = TT ∗ = 1. (This is equivalent to T carrying some (hence, every) orthonormal basis to an
orthonormal basis, or in other words, “the columns of T are an orthonormal basis.”) The success of
the definition of a unitary operator, and especially realizing how useful the condition T ∗T = TT ∗

is while proving things about unitary operators, one might consider weakening the definition to
simply T ∗T = TT ∗ and seeing which theorems are still true, which would consequently lead to our
definition of normal operator.
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The fourth explanation

A last bit of intuition for the origin of normalcy, one might naively ask whether T ∗T = TT ∗ in general,
especially if one has just defined a unitary operator. After finding a counterexample, one might try
to characterize which operators have this property. If one simply assumes that T ∗T = TT ∗, one will
quickly prove the spectral theorem and have discovered normal operators.
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